Forschungsbericht 2006 - Max-Planck-Institut für medizinische Forschung
Genetisch veränderte Glutamatrezeptoren in der Maus: Synaptische Erregungsleitung, Plastizität und Rolle beim Lernen
Genetic alterations of glutamate receptors in the mouse: synaptic excitation, plasticity and role in learning
Authors
Seeburg, Peter H.; Sprengel, Rolf; Köhr, Georg; Osten, Pavel
Departments
Ein Dogma der Neurowissenschaften besagt, dass Lernvorgänge im Gehirn dauerhafte Veränderungen an chemischen Synapsen bewirken. Die Funktion von Schlüsselmolekülen bei solchen Veränderungen zu beschreiben, ist das Ziel der Abteilung Molekulare Neurobiologie am MPI für medizinische Forschung. Die meisten Synapsen im Gehirn sind spezialisiert auf schnelle Erregungsleitung und operieren mit dem chemischen Botenstoff L-Glutamat, der vom sendenden Teil der Synapse (Präsynapse) auf einen Reiz hin ausgeschüttet wird, durch den synaptischen Spalt diffundiert und am empfangenden Teil (Postsynapse) an spezifische Rezeptoren bindet. Die Glutamatbindung öffnet eine Pore in diesen Rezeptoren, sodass für kurze Zeit (einige Millisekunden) positiv geladene Ionen (Kationen) in die Nervenzelle fließen und diese von ihrem Ruhezustand in einen Erregungszustand überführen (die Zellmembran depolarisieren). Die genetische Manipulation der Glutamatrezeptoren (GluRs) in der Maus verändert synaptische Wirkungsweisen und kann das Lernvermögen beeinträchtigen oder – seltener – erhöhen. Im Folgenden werden Versuche über Funktionsaspekte von Glutamatrezeptoren bei räumlichem Lernen sowie bei Geruchsunterscheidungen beschrieben. Die Expression von funktionsveränderten GluRs kann auch neurodegenerative Erkrankungen wie Epilepsie und amyotrophe Lateralsklerose auslösen.
A dogma in the Neurosciences states that learning causes long-lasting changes in chemical synapses of the brain. The goal of the Department of Molecular Neurobiology at the MPI for Medical Research is to describe the function of key molecules for such changes. Most synapses in the brain are excitatory in nature and operate with the chemical transmitter L-glutamate, which when released upon an impulse from the sending part of the synapse (presynaptic specialization), diffuses across the synaptic cleft and binds to postsynaptically localized specific receptors. Binding of glutamate opens an inherent pore in the receptors, such that for a brief moment (several msec) positively charged ions (cations) flow into the nerve cell, shifting the cell from its resting state to an excited state by depolarizing its membrane potential. Genetic manipulation of glutamate receptors (GluRs) in the mouse alters synaptic function and may impair or – more rarely – enhance learning abilities. The following investigations highlight important functional aspects of glutamate receptors in spatial learning for which the hippocampus, a prominent brain structure, is essential, and also in olfactory learning in olfactory synapses. Moreover, the expression of functionally altered GluRs can evoke neurodegenerative diseases such as epilepsy and amyotrophic lateral sclerosis.